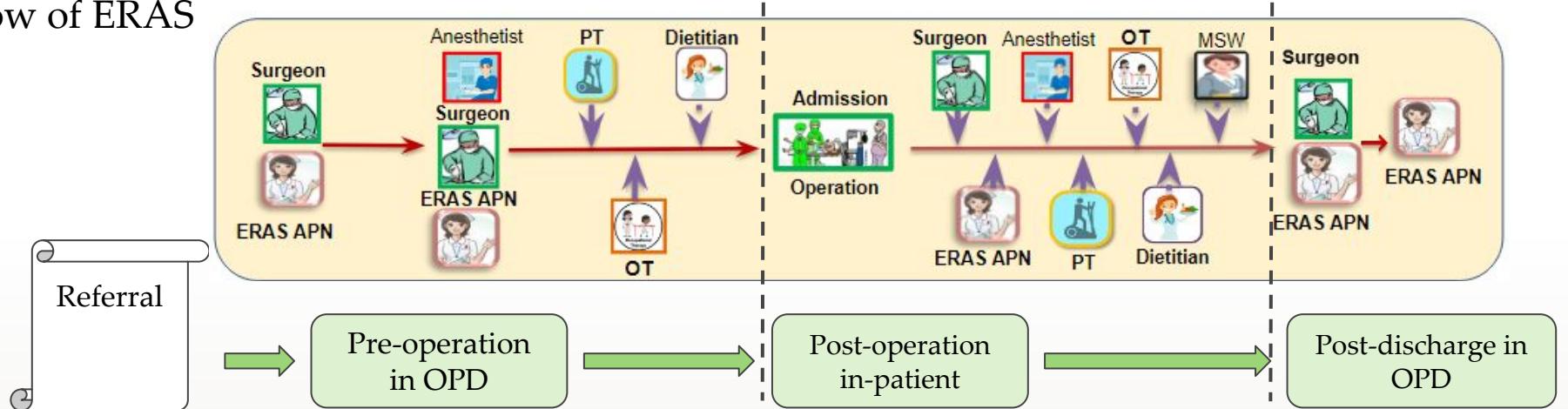


Hospital Authority Convention 2025

Topic:

Effectiveness of Occupational Therapy Pre-Operative Rehabilitation for Patient with Lumbar Spinal Fusion in ERAS Program: A Retrospective Study

Cheung Chi Fung Michael
Resident Occupational Therapist
Yan Chai Hospital


Yan Chai Hospital

Enhanced Recovery After Surgery (ERAS) program

- Inspired by Total Joint Replacement program in YCH
 - Enhance the perioperative care with **multidisciplinary** approach to the patient after surgery
- **Enhanced Recovery After Surgery (ERAS) program**
 - Initiated since **April 2020** in Kowloon West Cluster (KWC)
 - Enhance the **perioperative care** of KWC patients who are going to have major ENT, General Surgery and **Orthopaedic Surgery**

Flow of ERAS

OT services

- Perform ADL assessment
- Screening for preoperative home visit
- Provide information on assistive device as appropriate
- **Education** on techniques in ADL tasks

- ADL and Caregiver training
- assistive devices prescription
- Post-op home visit if indicated
- **Ensure Safe Early Discharge**

- Fast track OPD rehabilitation program
- Scar management

TELE?

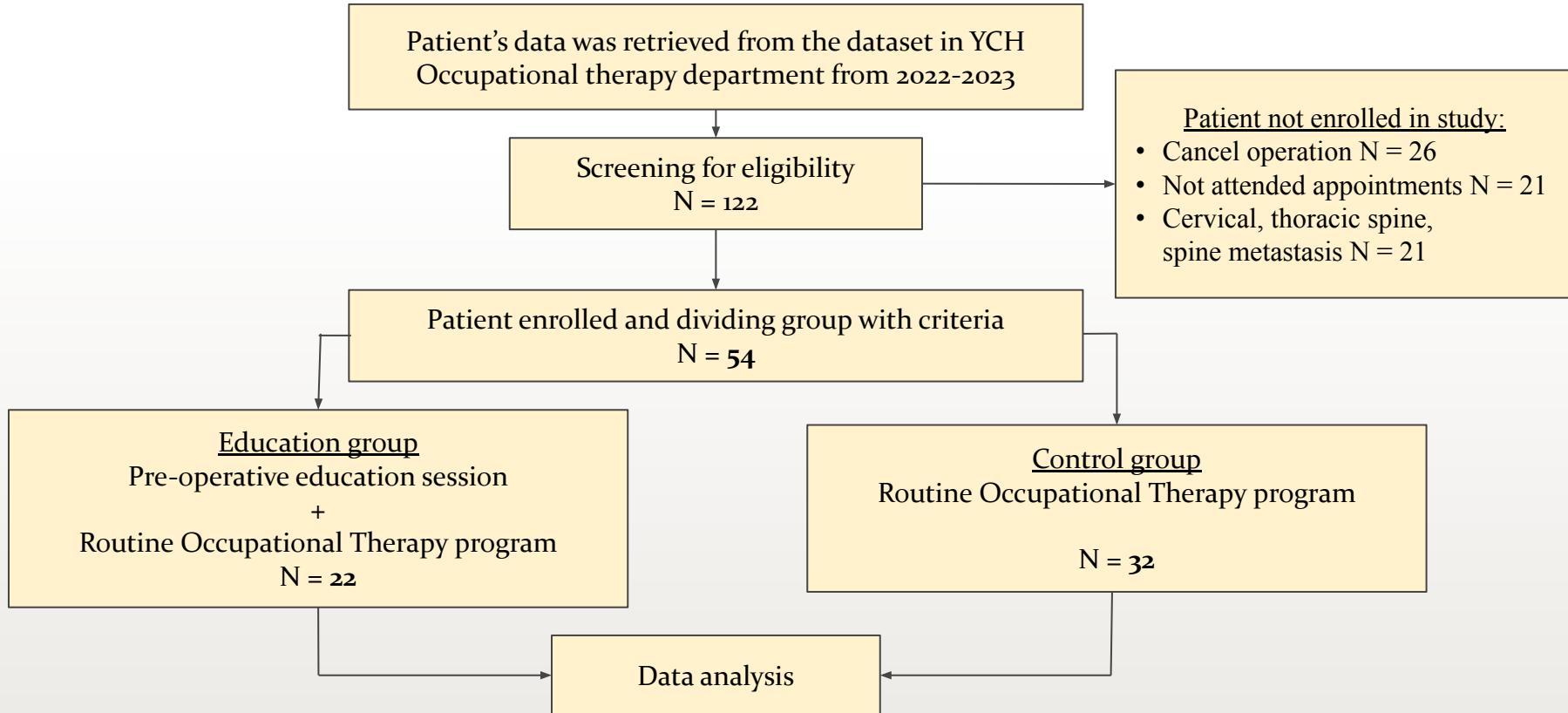
Objectives

- To evaluate the effectiveness of Occupational Therapy pre-operative education on **length of stay, pain level, and functional outcome** of patients after lumbar spinal fusion in the ERAS program
- Provide insight for developing a **comprehensive guideline** on whether pre-operative education is recommended to be included
- Enhances the clinical practice in the ERAS program

Study design

- A retrospective cohort study
- Recruited patients with lumbar spinal fusion done within ERAS program in Yan Chai Hospital from 2022-2023

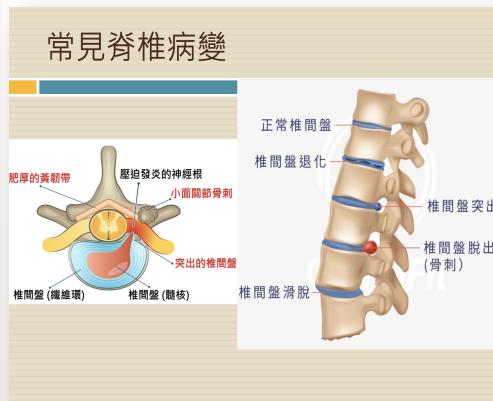
Education group


- **Occupational Therapy Pre-Operative Education Class**
 - Initiated in OPD since **4/2023**
 - **4-6 weeks** before operation
 - **One-hour** session
 - Patients +/- caregivers
- **Routine Occupational Therapy program**

Control group

- **Routine Occupational Therapy Program (1/2022 - 3/2023)**
 - Pre-operative baseline assessment
 - Post-operative in-patient ADL training and rehabilitation
 - Out-patient clinic post-operative assessment and rehabilitation

Study Design


OT Intervention

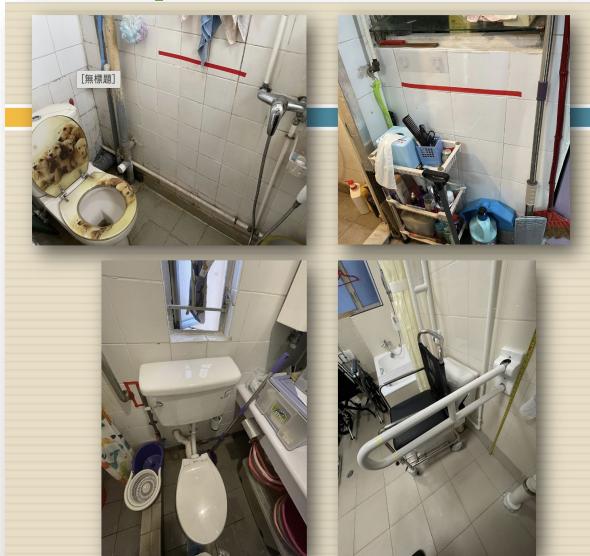
Prepare Patient and Caregiver
Prepare Home Environment

→ Facilitate Safe and Early Discharge

Pre-operation Class

Spine pathology

ADL adaptive strategies



Yan Chai Hospital

OT Intervention

Prepare Patient and Caregiver
Prepare Home Environment

→ **Facilitate Safe and Early Discharge**

Home Visit and suggestions
on home modification

Adaptive aids recommendation
and prescription

Post-operation rehabilitation

Outcome measures

- Primary outcomes
 - Length of stay in hospital (retrieved from CMS)
 - Oswestry Disability Index (ODI)
 - Pain level (NRS)
- Secondary outcomes
 - ADL performance (Modified Barthel Index)
 - Patient's wellbeing (Chinese version of WHO-5)
- Assessment performed at pre-op, post-op 6 weeks, post-op 3 months

Results

Demographics data	Education group	Control group
Number	22	32
Gender		
Male	10	11
Female	12	21
Mean age ± SD	69.00 ± 7.00	65.16 ± 8.99
Number of levels operated on	Average ± SD	
2	11	16
3	6	16
4	5	0
Living setting		
Home alone	2	6
Home with family, daytime alone	9	4
Home with family/carer	11	22
Discharge destination		
Home alone	2	5
Home with family, daytime alone	7	4
Home with family/carer	13	20
Institutional / respite care	0	3

Yan Chai Hospital

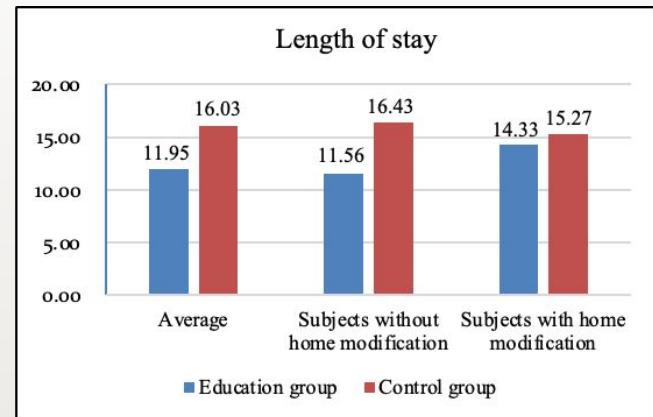
All D/C
home!

Results

Pathology types		Education group	Control group	p-value
Spinal stenosis				0.117
Level involved				
L2/3		20 (90.91%)	30 (93.75%)	
L3/4		5 (22.73%)	2 (6.25%)	
L4/5		12 (54.55%)	16 (50.00%)	
L5/S1		20 (90.91%)	26 (81.25%)	
Prolapsed disc		2 (9.09%)	5 (15.625%)	
Spondylolisthesis				
		1 (4.545%)	2 (6.25%)	
		1 (4.545%)	0 (0.00%)	

Chi-Square = 15.447

Yan Chai Hospital


Results

Length of stay

- Education group has **significantly shorter LOS** than the control group ($Z = -1.981$, Effect size: $r = 0.270$)
- Same result was found in subjects **without home modification**, but not in subjects with home modification ($Z = -2.037$, Effect size: $r = 0.277$)

Means of outcome measures	Education group	Control group	p-value
Length of stay (days)	11.95 (N = 21*)	16.03 (N = 32)	0.048*
Subjects without home modification	11.56 (N = 18)	16.43 (N = 21)	0.042
Subjects with home modification	14.33 (N = 3*)	15.27 (N = 11)	0.875

*1 outlier was eliminated
By Mann-Whitney U test

Results

Means of outcome measures		Education group	Control group	p-value
Pain level (NRS)				0.255
	Pre-op	5.27	5.91	
	6 weeks post-op	3.09	2.88	
	3 months post-op	2.86	2.50	
ODI				0.105
	Pre-op	42.80	44.06	
	6 weeks post-op	36.53	34.08	
	3 months post-op	35.52	30.48	
MBI				0.867
	Pre-op	95.32	95.44	
	6 weeks post-op	92.55	93.28	
	3 months post-op	93.82	94.50	
WHO-5				0.904
	Pre-op	52.73	56.75	
	6 weeks post-op	65.45	68.50	
	3 months post-op	65.82	68.88	

- Pain level, ODI, MBI, and WHO-5 have **no significant difference** in time x group interaction between the education group and control group ($p > 0.05$)

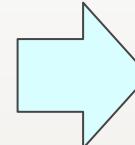
Results

Subgroup analysis of outcome measures by time intervals	Education group (t-value)	p-value	Control group (t-value)	p-value
Pain level (NRS)				
Pre-op vs 6 weeks post-op	3.464	0.002	6.365	< 0.001
Pre-op vs 3 months post-op	3.804	0.001	7.480	< 0.001
6 weeks post-op vs 3 months post-op	1.418	0.171	1.879	0.070
ODI				
Pre-op vs 6 weeks post-op	3.319	0.003	3.817	0.001
Pre-op vs 3 months post-op	3.943	0.001	5.479	< 0.001
6 weeks post-op vs 3 months post-op	1.688	0.106	2.909	0.007
MBI				
Pre-op vs 6 weeks post-op	2.159	0.043	0.166	0.019
Pre-op vs 3 months post-op	1.342	0.194	0.294	0.294
6 weeks post-op vs 3 months post-op	-1.826	0.082	0.015	0.015
WHO-5				
Pre-op vs 6 weeks post-op	-5.024	< 0.001	-6.512	< 0.001
Pre-op vs 3 months post-op	-5.125	< 0.001	-6.803	< 0.001
6 weeks post-op vs 3 months post-op	-1.000	0.329	-0.722	0.476

Returned to
premorbid
~3m post-op

Discussion

- Length of stay can be effectively shortened with ~ 4-day reduction by providing pre-operative education to the patients and caregivers


Improved **adaptive skills** in daily task

Improved **readiness** for operation, reduced anxiety

Aids and home modification ready before operation

Increased capability of **caregiver**, reduced caring stress

Increased knowledge and **managed expectation** before operation

Enhanced recovery

Reduced hospitalization

Less institutional needs

(Eastwood et al., 2019)
(Edwards et al., 2022)

Yan Chai Hospital

Discussion

- Pre-operative education can **increase the cost-effectiveness** of routine clinical practice in ERAS program

One day O&T in-patient cost
per patient treated in 2009/10:
~ \$21,630

- Low cost** in implementation
- More efficient by utilization of **group-based delivery**

(Louw et al., 2014)

Yan Chai Hospital

Discussion

- Content of pre-operative education **lacked a consensus** in terms of **mode of delivery, specific topics, optimal timing, and interventions** to be included
 - Delivery mode: talks, education booklet, TELE, prehabilitation training?
 - Topics:
 - Biophysiological, function, cognitive and social
 - Pain management?
 - Further research to identify the essential content and feasible mode of education delivery

(Burgess et al., 2019)
(Debono et al., 2021)

Yan Chai Hospital

Conclusion

- Occupational Therapy pre-operative education can be included in the routine service for patients with lumbar spinal fusion in the ERAS program
- It is a cost-effective measure that can significantly reduce the length of stay of the patients by enhancing their readiness to the operation and learning adaptive skills in ADL tasks
- Further research is recommended to identify the essential contents of education, optimal mode and timing of delivery for pre-operation interventions in the ERAS program
- Apply to services in other scheduled operation

Acknowledgements

The O&T Department and Members of ERAS Team, YCH

Mr. Ben Kong (DMOT) and Staff of Occupational Therapy Department, YCH

Dr. TP Lam, Associate Professor of Practice, Department of O&T, CUHK

Yan Chai Hospital

References

Burgess, L. C., Arundel, J., & Wainwright, T. W. (2019). The effect of preoperative education on psychological, clinical and economic outcomes in elective spinal surgery: a systematic review. In *Healthcare* (Vol. 7, No. 1, p. 48). MDPI.

Debono, B., Wainwright, T. W., Wang, M. Y., Sigmundsson, F. G., Yang, M. M., Smid-Nanninga, H., ... & de Boer, H. D. (2021). Consensus statement for perioperative care in lumbar spinal fusion: Enhanced Recovery After Surgery (ERAS®) Society recommendations. *The spine journal*, 21(5), 729-752.

Eastwood, D., Manson, N., Bigney, E., Darling, M., Richardson, E., Paixao, R., ... & Abraham, E. (2019). Improving postoperative patient reported benefits and satisfaction following spinal fusion with a single preoperative education session. *The Spine Journal*, 19(5), 840-845.

Edwards, R., Gibson, J., Mungin-Jenkins, E., Pickford, R., Lucas, J. D., & Jones, G. D. (2022). A preoperative spinal education intervention for spinal fusion surgery designed using the rehabilitation treatment specification system is safe and could reduce hospital length of stay, normalize expectations, and reduce anxiety: a prospective cohort study. *Bone & Joint Open*, 3(2), 135-144.

Louw, A., Diener, I., Landers, M. R., & Puentedura, E. J. (2014). Preoperative pain neuroscience education for lumbar radiculopathy: a multicenter randomized controlled trial with 1-year follow-up.

Yan Chai Hospital

Thank You!